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Introduction.  

In the name of Allah 

Through my teaching in renewable energy department,  

College of energy and environmental sciences in  

AL- Karkh University of science . 

I noticed we need to start written book in specializes 

mathematics in renewable energy.  

For this reason I decided write this book for name 

The calculus in renewable energy department.  

This book contains the first and second course for 

mathematics in renewable energy. 

The chapter one contains the course description for first 

course such as the tangent and velocity problems, The 

Limits of function, calculating limits using the limits 
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laws, limits at infinity, continuity of function, Horizontal 

and vertical asymptote, derivative and Rates of change, 

the Derivative as a function, differentiation of 

polynomials, the product and quotient rules,  derivative 

of Trigonometric functions ,Chain Rule, implicit 

differentiation. Related Rates, Maximum and Minimum 

values and Mean value theorem, how derivative affect 

the shape of a Graph. Summary of curve sketching, 

Optimization problem, ant derivatives, area and 

derivatives. The define integral, the fundamental theorem 

of calculus, the indefinite integral and net change 

theorem, the substitution Rule,  areas between curves, 

volumes by cylindrical shells. Average value of a 

function, exponential and logarithm functions, derivative  

and  Integrals  involving logarithmic  functions,  inverse  

functions, derivative and integrals involving Exponential 

functions,  derivative and integrals involving  inverse 

Trigonometric functions. Hyperbolic functions and 

Hanging cables, indeterminate forms and L  Hospital  s 

Rule. 

The chapter two contains the Course Description for 

second course such as, review of Inverse functions, 

inverse Trigonometric functions, derivative of inverse 

Trigonometric functions Hyperbolic functions, Inverse 

Hyperbolic functions and their derivative, Integrals 

involving Inverse Trigonometric functions, Integration 

by parts. Trigonometric integrals, trigonometric 

substitution, Integrating rational functions by partial 
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fractions, type of improper integrals and method of 

evaluation, sequences and their limit, monotone 

sequences, Infinite sequence, the comparison, ratio and 

Root tests. Alternating series, conditional converges. 

Maclaurin series and Taylor series, and their 

approximation power series, differentiating and 

integrating power series, polar coordinates, curves 

defined by parametric equations, tangent line and length 

for parametric and polar curves and area in polar 

coordinates. 

In addition this book contain more than 200 examples 

solution and more than 100 homework and contain more 

than 30 illustration forms. 

In the end I would like to thank God for help me in 

completion my book, The mathematics in renewable 

energy department. 

Tanks for all. 

For any  proposition or any change wrote to  my email on 

the page. 

Thamer.197675@yahoo.com 

Thamer.197675@kus.edu.iq 

The author. 

Dr. Thamer Khalil M.S  AL-Khafaji. 
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Chapter one 

 

 

in this introductory chapter  will study Course 

description for first course written in renewable energy 

department. 
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Contents. 

This is  Course description for first course wrote in 

renewable energy contain 14  sections, some times  there 

exist  some  definitions delay maybe for urgent need. 

1- The tangent and velocity problems. The Limits of 

function. 

2- Calculating limits using the limits laws, limits at 

infinity, Continuity of function. 

3-Horizontal and vertical asymptote, derivative and 

Rates of change. 

4- The Derivative as a function, differentiation of 

polynomials, the product and quotient Rules. 

5- Derivative of Trigonometric functions, Chain Rule. 

6- Implicit differentiation. Related Rates. 

7-Maximum and Minimum values and Mean value 

theorem. 

8-How derivative Affect the shape of a Graph. Summary 

of curve sketching  

9- Optimization problem . Ant derivatives 

10- Area and derivatives. The define integral.  

The fundamental theorem of calculus. 

11- the indefinite integral and net change theorem. 
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 The substitution Rule. Areas between curves. 

12- Volumes by cylindrical shells. Average value of a 

function. 

13- Exponential and logarithm functions, Derivative and  

Integrals involving logarithmic functions. 

 Inverse  functions. Derivative and integrals involving 

Exponential functions. 

14-Derivative and integrals involving  inverse 

Trigonometric functions. Hyperbolic functions and 

Hanging cables. indeterminate forms and L  Hospital  s 

Rule. 
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Limits of function. 

The concept of a limit is the fundamental building block 

on which all other calculus concepts are based. 

Definition: 

     
   

 ( )    

Mean that: When a value of  f(x) close to (a) the function 

f(x) approaches the limiting value (L). 

Properties:  

1-         ( )    

Mean that:  (x) approaches (a) from the right. 

2-          ( )    

Mean that:  (x) approaches (a) from the left. 

Note: If          ( )             ( ) 

We say that         ( )       Exist, other wise the 

limit does not exist. 

Example:  

Find         ( )  where f(x) ={
                 
                    

 

Solution: 
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 ( )      
    

       

 

    
    

 ( )      
    

       

Then 

         ( )             ( ) 

         ( ) exist. 

Example:  

        
   

 ( )       ( )  {
                              
                                       

 

Solution: 

    
    

 ( )      
    

        

 

    
    

 ( )       
    

    

Then 

          ( )           ( ) 

        ( ) does not exist. 

Example:  

        
    

 ( )       ( )  {
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Calculating limits using the limits laws. 

When we solve the limit, we need to solve by use the 

laws. 

            ( )    ,          ( )    . 

      
   

, ( )   ( )-   

        ( )           ( )       . 

      
              

, ( )   ( )-   

        ( )           ( )       . 

3-     
   

 ( )

 ( )
 

        ( )

        ( )
 but         ( )     

4-          ( )           ( )   

Where K is constant. 

5-             

6-            

7-        
 

 
    

8-         
 

 
     

9-         
 

 
     

10-        
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11-                

12-                 

13-         
    

 
    

14-        
 

    
    

Undefined expression in limits 

 

 
 
 

 
 
 

 
 
 

 
             

But we can say        . 

Evaluate the following limits: 

Example: 

    
   

    

 
 

Solution: 

    
   

    

 
 

 

 
    

Example: 

    
    

(   )(   )

   
 

Solution: 

    
    

(   )(   )

   
      

    
(   )            
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Example: 

   
   

   
    

   
 

Solution. 

   
   

   
    

   
    

   
 
(   )(       )

   
 

                    
   

                    

Example: 

   
   

   
√     

(   )
 

Solution. 

   
   

   
√     

(   )
 

√     

√     
 

   
   

   
     

(   )(√     )

    
   

   
(   )

(   )(√     )

    
   

   
 

(√     )
 

 

(√     )

 
 

   
 

 

 
 

Example: 
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Solution: 

    
   

      

 
 *

 

 
 =    

   

        

  
       

   

     

  
       

limits at infinity. 

when a limit approaching to   we can solve the limit by 

laws, See the example. 

Example: 

    
   

         

     
  

Solution. 

    
   

         

     
     

             

   

   
   

   
 
  

   

   
 
  

     
   

  
 
  

 
  

  
 
  

 
 

 
  

Example: 

    
   

         

    
  

Solution. 
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Problems: 

1-    
   

    

   
 

2-     
   

      

   

3-    
   

√       -x 

4-    
   

√   

   
 

5-    
   

    

         
 

6-     
   

(    )(√   )

       
 

7-    
   

   

√      
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Continuity of function. 

Definition: 

Continuity of a moving  particle on a single path with out 

unbroken curve ,gaps and jumps or holes  such curve 

can be said to be as continuous. 

A function is said to be continuous at x=a if the following 

conditions are satisfied: 

1-The  ( )  is exist or defined 

2-    
   

 ( ) exist 

3-    
   

 ( )   ( )  

Otherwise the function is not continuous see the figure 

Example: 

Check if the function is continuous at  x=5, x=0,where 

  ( )  {
                               
                                      

 

Solution: 

At x=5 

1- ( )         ( )            

2-     
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The limit does not exist, there fore the function is not 

continuous at x=5. 

At x=0. Homework. 

Example: 

                    ( )  {
                                           

                                        
 

And if the function is continuous at x=1 ? 

Solution: 

1-  ( )     ( )     

2-    
    

 ( )     
            

    

    
    

 ( )     
    

       

     
    

 ( )     
    

 ( )    

3-    
   

 ( )   ( )    

  f is continuous at x=1. 

Example: 

Graph the function  ( )   {
                           

                               
 

 

And if the function is continuous at x=2 ? Home work. 
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Example: 

Find the value of constant (a) and (b) if the function is  

 ( )  {
                      

                               
                                  

 

when the function is continuous at x=0 and x=-1. 

Solution: 

At x=0, 

1-  ( )        ( )           

     
    

       

           
    

         

Since the function is continuous at x=0, the limit must be 

exist so  

a=3+b   …………(1). 

At x=-1 

1-    ( )       (  )          

      
     

        

            
     

       

Since the function is continuous at x=-1, the limit must 

be exist so. 
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4=3+b       

By the equation (1) a=4. 
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Horizontal and vertical  asymptote. 

Definition: 

A function that can be expressed as a ratio of two 

polynomials is called a rational function. 

If P(x) and Q(x) are polynomials then the domain of the 

rational function 

 ( )  
 ( )

 ( )
  

 Consists of all values of x such that Q(x)    

Example: 

Find the Horizontal asymptote for the function 

 ( )  
     

    
  

The domain of the rational function consists of all value 

of x, except x=1 and x=-1. 

Vertical Asymptote: 

Definition: 

Unlike polynomials, rational function may be have 

numbers at which they are not defined near such points, 

many (but not all)rational functions have graphs that 

approximate a vertical line called a Vertical Asymptote. 
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Horizontal Asymptote: 
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Definition: 

Unlike the graphs of non constant polynomials, which 

eventually rise or fall indefinitely the graph of many (but 

not all)rational functions eventually get closer and closer 

to some horizontal line, called horizontal asymptote. 

Now: 

The vertical and Horizontal Asymptote for the function. 

  

 ( )  
     

    
  

 

Vertical Asymptote x=1,-1 

Horizontal Asymptote y=1. 

Example: 

Find the Vertical and Horizontal Asymptote for the 

function 

 ( )  
    

   
 

Solution: 

1-Vertical Asymptote x=-1. 

2- Horizontal Asymptote 

 ( )    
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 (   )          (   ) 

  
    

   
 

Horizontal Asymptote y=3. 

Example: 

Find the Horizontal asymptote of each rational function. 

   ( )    
   

       
 

   ( )  
    

   
 

   ( )  
        

        
 

   ( )  
    

     
 

   ( )  
        

     
 

Answers. 

 1) None  

2) y = 7  

  )  
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 4) y = 0  

5) y = 2 

Problems: 

Find the Vertical and Horizontal Asymptote for the 

function and graph. 

    ( )  
  

    
 

    ( )  
   

   
 

    
    

    
 

   ( )  
 

    
 

    
    

       
 

   ( )  
 

    
 

   ( )           

 

 

 

 

 



The calculus in Renewable Energy Department 
 

29 
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Derivative and Rates of change 

Definition: 

If y=f(x), then the average rate of change of y with 

respect to x over the interval [     - is. 

     
 (  )   (  )

     
 

Geometrically: 

 The average rate of change of y with respect to x over 

interval [     - is the slope of the secant line to the 

graph of y=f(x) through the points (    (  )) and 

(    (  )). 

 

Definition:  

If y=f(x) then the instantaneous rate of change of y with 

respect to x when x=     

         
     

 (  )   (  )

     
 

Example: 

 Find the average rate of change of y with respect to x 

over the interval [3,5] , y=  +1. 

Solution: 
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 (  )   (  )

     
 

 ( )   ( )

   
 

     

 
   

Thus, on the average, y increases 8 unit per unit in 

crease in x over the interval [3,5]. 

 Example: 

 Find the average rate of change of y with respect to x 
over the interval [0,180],   y=cos x. 
Solution: 

     
 (  )   (  )

     
 

 (   )   ( )

     

 
           

     
 

  

   
 

  

  
 

Thus, on the average, y decreases 
  

  
 unit per unit in 

crease in x over the interval [0,180]. 

Example:  

Find the instantaneous rate of change of y with respect 

to x when x=-4, y=     

Solution: 

         
     

 (  )   (  )

     
 

         
     

       

   
    

     

     

   
 

         
     

(   )(   )
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For small change in x from x=-4, the value of  y will 

change approximately eight  times as much in the 

negative direction. 

Exercise: 

Find the instantaneous rate of change of y with respect 

to x at the general point corresponding to x=  , where 

y=  +1. 
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Derivative as a function. 

Definition: 

Let    ( ) define a function of x if  

       
 (    )  ( )

  
 exist and finite, we call this limit 

the derivative of f at x and denoted by 

  ( ) 
  ( )

 ( )
 
  

  
    and say that f is differentiable at x. 

Remark: 

1-Let y=f(x),   y=    (    ) then   

    (    )    

    (    )   ( ) 

   
  

  
 

 (    )   ( )

  
 

3- if  (    )   ( )     then        
 (    )  ( )

  
 

   
    

  

  
 

  

  
  

Example: 

Let y=f(x)= c, use the definition of derivative of limit to 

find y  

Solution: 

The definition of derivative is 
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  ( )     
    

 (    )   ( )

  
 

  ( )     
    

   

  
 

  ( )     
    

 

  
    

We get if f(x)=c then f (x)=0. 

Example: 

Let y=f(x)=  , use the definition of derivative of limit to 

find y  

Solution: 

The definition of derivative is 

  ( )     
    

 (    )   ( )

  
 

  ( )     
    

(    )    

  
    

    

        (  )    

  
 

    
    

  (     )

  
 

  ( )     
    

          

We get if f(x)=   then f (x)=2x. 
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Example: 

Let       ( )  √ , use the definition of derivative of 

limit to find y  

Solution: 

The definition of derivative is 

  ( )     
    

 (    )   ( )

  
 

  ( )     
    

√     √ 

  
 

  ( )     
    

√     √ 

  
  

√     √ 

√     √ 
 

  ( )     
    

 
      

  (√     √ )
 

  ( )     
    

 
 

(√     √ )
  

 

√  √ 

 
 

 √ 
 

We get if f(x)=√  then f (x)=
 

 √ 
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The tangent and velocity problems. 

Remark: 

1- The derivative of a function f at the point x=a is the 

slope of the tangent line to the curve of f at the point  

(a, f(a)). 

  ( )     
    

 (    )   ( )

  
  

 

2-        (    )  The equation of line tangent 

3-       
  

 
(    )  The equation of perpendicular 

line 
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Example: 

Find the equation of the line tangent and the equation 

of perpendicular line to the curve   √   at  x=1. 

Solution: 

Since x=1 then  ( )    √  √     

then the point (1,1) is called tangent point,  

The slope m=Derivative of f at the point (1,1). 

  √  ( )
 
  

   

     
  

  
 

 

 
( )  

 
  

 

 √ 
 

                        (   )    
  

  
 (   )  

 

 √ 
(   )  

 

 
 

      (    )  The equation of line tangent 

    
 

 
(   )      

         

                                         

perpendicular line        

     
  

 
(    )   

      (   ) 
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Example: 

Find the equation of the line tangent and the equation 

of perpendicular line to the curve      at (2,5) by the 

definition of derivative. 

Solution: 

  ( )     
    

 (    )   ( )

  
 

  ( )     
    

      

  
   

The slope m=1 

      (    )  The equation of line tangent 

     (   )   

                                     

Equation of perpendicular line (   ) 

Problems: 

Find the equation of the line tangent and the equation 

of perpendicular line to the curve   √       at  x=4. 

Solution. 

  √           
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 (    )  

 

 √ 
(    )  

 

 
 

The  slope. 

      (    )  the equation of line tangent 

    
 

 
(   ) 

           

          

The equation of perpendicular line (   ) 

Theorem:  

If f is differentiable at    then f is continuous at   . 

Remark:  

The converse of above theorem is not true since the 

function may be continuous at   , but not differentiable 

at     

The function   | | is continuous at x=0  

but not differentiable at x=0. 
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Differentiation of polynomials. 

In this section we will develop some important theorems 

that will enable us to calculate derivatives more 

efficiently. 

Theorem: 

   
 

  
      

 

   
 

  
           

 

   
 

  
    ( )      ( )  

 

   
 

  
( ( )   ( ))    ( )    ( )  

 

  
 

  
, ( )-   , ( )-     ( )  

 

  
 

  
√ ( ) 
 

 
  ( )

 √ 
 

( )
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Example: 

                 
  

  
 

Solution: 

  

  
    

Example: 

              √          
  

  
 

Solution: 

  

  
         

Example: 

      
  

 
 

  

 
    .       

  

  
 

Solution: 

  

  
 

   

 
 

  

 
           

Example: 

      (    ) .      
  

  
 

Solution: 

  

  
  (    )           (    )   
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  (     )  

Solution: 

  

  
  (     ) (     )  (       )(     ) 

Exercise: 

     
  

  
                             

    (         )
 
  

    √           

Problems: 

     
  

  
                             

    (     )
 
  

    √        
 

  

Product and quotient rules. 

   
 

  
( ( )  ( ))   ( )  ( )   ( )  ( )    

 

   
 

  
(

 ( )

 ( )
)  

 ( )   ( )   ( )  ( )   

( ( )) 
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Example: 

      (         )(           )      
  

  
 

Solution. 

By 
 

  
( ( )  ( ))   ( )  ( )   ( )  ( )    

  

  
 (         ) (        )

 (           )(     )  

Example: 

      
    

         
 .      

  

  
 

Solution: 

      
 

  
(

 ( )

 ( )
)  

 ( )   ( )   ( )  ( )   

( ( )) 
 

  

  
 

(        )    (    )(    ) 

(        ) 
 

Example: 

      (   )
 
  (    )  .      

  

  
 

Solution: 

  

  
 (   )

 
 (  (    )      )

   (    )  ( (   )) 
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 (   )

 
 (   (    )    )

   (    )  ( (   )) 

  

  
 

   (   )
 

(    ) 
 

 (   )

(    ) 
  

Example: 

      (
   

   
)

 

     
  

  
 

Solution: 

  

  
  (

   

   
) (

(   )  (   )

(   ) 
) 

Problems: 
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Implicit differentiation. 

Let    (   ) be a function of two independent 

variable x and y. 

1- If y is fixed then f will be a function of one variable 

than we can derive with respect to (w.r.t) x. this 

derivative is called partial derivative of f (w.r.t) x 

and denoted by  
  

  
, hence    is a function and its 

value at (     ). 

2- If x is fixed then f will be a function of one variable 

than we can derive with respect to (w.r.t) y. this 

derivative is called partial derivative of f (w.r.t) y 

and denoted by 
  

  
, hence    is a function and its 

value at (     ). 

 

Example: 

Find         of the following function. 

 (   )                     

Solution: 

            

           

Example: 

Find             of the following function 

 (   )  √        (       )
 
     

Solution: 

   
 

 
(       )

  
    (   )  

  

√       
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(       )

  
    (   )  

  

√       
 

 

Exercise: 

Find      of the following functions 

 

   (   )      
 

 

   (   )            

   (   )  
 

  
 

 

   (   )     (        ) 
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Derivative of Trigonometric functions. 

Theorem. 

   
 

  
            

  

  
 

  
 

  
           

  

  
 

  
 

  
           

  

  
 

  
 

  
            

  

  
 

  
 

  
                

  

  
 

  
 

  
                 

  

  
 

Example: 

     
  

  
                             

         

Solution: 
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Example: 

     
  

  
                         

Solution: 

  

  
           

Example: 

     
  

  
                      √    

Solution: 

√     (   )
 
  

  

  
 

 

 
(   )

  
       (   )

  
  

 

√   
 

  

  
 

      √   

√   
 

Example: 

     
  

  
                          

Solution: 

         (     )  

  

  
   (     )                        (     )    
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Example: 

     
  

  
                       (   ) 

Solution: 

  

  
     (   ) (  )        (   )  

Example: 

     
  

  
                          

Solution: 

         (     )  

  

  
   (     ) (           )                  

Example:  

     
  

  
                       .

 

   
/ 

Solution: 

  

  
      .

 

   
/  

(   )    

(   ) 
 

  

(   )  
    .

 

   
/  

Example: 

     
  

  
       (   ) 

Solution: 
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    (   )    (   )(  )

     (   )     (   )  

Example: 

     
  

  
           

Solution: 

         (     )
 

 

  

  
   (     )                           

Example: 

     
  

  
     If              

Solution: 

  

  
      (     )                         

Example: 

     
  

  
           √  

Solution: 

  

  
     √    

 

 √ 
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Example: 

     
  

  
             

Solution: 

       
    

    
 

  

  
  

          ,          -

     
  

           

     
 

 

     
       

Example: 

     
  

  
                 

Solution: 

        
  

  
         

  

  
 

 

     
 

 

       
 

 

    
  

Exercise: 

     
  

  
                                          

          

    ,    (       -  
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        (   (    ))  
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Chain Rule. 

Definition: 

If g is differentiable at x and f is differentiable at g(x) 

then the composition f(g(x)) is differentiable at x. 

If 

   ( )    ( )            
   

  
 

   

  
  

  

  
  

     
 

  
, ( ( )-    ( ( ))   ( )  

Example: 

     
  

  
                                 

Solution: 

   

  
 

   

  
  

  

  
 

   

  
        

  

  
       

   

  
     ( ) (     )      (         ) (     ) 

Example: 

     
  

  
      √            
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Solution: 

  
 

  
        

  

  
       

   

  
 

 

 
(   ) 

 
  

 

 √   
 

   

  
 

   

  
  

  

  
 

 
   

  
  

 

 √   
 
  

  
 

 

√  
    

 
  

  
  

Example: 

     
  

  
                  

Solution: 

   

  
 

   

  
  
  

  
 

 
   

  
            (  )        

Example: 

     
  

  
                   

 

 
     

Solution: 
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      . 

 

 
/       

       
   

  
     .  

 

 
 /  

Exercise: 

       
  

  
                       

 

 
      

       
  

  
        

  

    
         √      

       
  

  
                           

       
  

  
        (   )

 
 ⁄         
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The exponential function: 

The function      is called the exponential function 

where is exponential number (         ) and x be 

any real number  

                   

   (   )      *     + 

Property of exponential function  

            

      
 

  
 

  
  

  
      

       

     
   

     

     
    

       
   

    
 

 
     

      (  )  

Derivative of exponential function 

                  
  

  
        

Example: 

Find 
  

  
 of the function         
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Solution: 

  

  
          

Example: 

Find 
  

  
 of the function          

Solution: 

  

  
                

Example: 

Find 
  

  
 of the function       (     ) 

Solution: 

  

  
     (     )      

Example: 

Find 
  

  
 of the function    

 

 
(      ) 

Solution: 

  

  
 

 

 
(      ) 

Example: 

Find 
  

  
 of the function    (       )       
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Solution: 

  

  
   (       )     (    )     

Remark: 

    is continuous.(because it is differentiable). 

The natural logarithm. 

The function         (        ) is called natural 

logarithm with base e, we write simply as    ( ) and real 

lin(x) 

   *     + 
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Properties: 

1-    ( )              ( )    ( ) 

2-   (   )    ( )    ( ) 

3-   
 

 
   ( )    ( ) 

4-         ( ) 

5-   
 

 
   ( )    ( )      ( )     ( ) 

6-         ( )    

7-          ( )     
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Derivative of logarithmic functions. 

The derivative of logarithmic functions is: 

         ( )  
  

  
 

 

 

  

  
  

Remark: 

     ( ) is continuous.(because it is differentiable). 

Example: 

     
  

  
      (  )  

Solution: 

  

  
 

 

  
 

 

 
  

Example: 

     
  

  
      (         )  

Solution: 

  

  
 

               

         
 

     (          )

         
       

Example: 

     
  

  
         (  (       ))  
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Solution: 

  

  
   (       )  

    

       
 

  

  
 

    
       

  (       )
 

    

(       )  (       )
  

Problems: 

     
  

  
                             

        
 

 
  (    )  

 
    

 
  

    √            

                     

 

Equation involving ln(x) and    

Since      and      ( ) are inverses of are another, 

we have  

                      

                             

Example: 

1-          

2-         
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3-                  

4-  
   

     
      

   (     )       (     )  

Problems: 

     
  

  
                             

    √              

           
  

 

 

 

 

 

 

 

 

 



The calculus in Renewable Energy Department 
 

66 
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 Derivative and integrals involving logarithmic 

functions.462k 

Definition: 

Let us consider the case where   
  

 
 where u,v and w 

and also y are functions of x. 

First take logs to the base. 

                

 

 

  

  
 

 

 

  

  
 

 

 

  

  
 

 

 

  

  
 

So to get 
  

  
 by it self, we merely have to multiply across 

by y. 

Remark: 

When we do this, we put the ground function that y 

represents 

  

  
 

  

 
[
 

 

  

  
 

 

 

  

  
 

 

 

  

  
] 

EXample: 

Differentiable with respect to x. 

  
      

     
 

Sol 
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 (

 

  
  )  (

 

    
    )  (

 

     
      ) 

 

 

  

  
 

 

 
             

  

  
 

      

     
(
 

 
            ) 

EXample: 

If                      
  

  
 

Sol 

                      

 

 

  

  
 (

   

  
)  (

 

   
   )  (

 

    
     ) 

 

 

  

  
 (

 

 
)  ( )  (

 

    
     ) 

  

  
          [(

 

 
)  ( )  (

 

    
     )] 
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Optimization problem.  

In this chapter we will study various applications of the 

derivative for example we will use method of calculus to 

analyze functions and their graphs. 

The optimization using (max, min) to solve optimize real 

world problems. 

EXample: 

Engineer has 500m of fence create rectangular factory 

along  desert. He needs no fence along the desert it self. 

What are the dimensions of the factory that has the 

largest area. 

       

                

              

From 1 we get  

         

By 2-------      

  (      )  
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       (   ) 

          

      

  (    )(    ) 

         . 

EXample: 

Find two positive numbers whose product is 121 and 

whose sum is a minimum. 

Sol 

xy=121----------1 

m=x+y-----------2 

By (1)  
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   √         

  
   

  
     

EXample: 

Find the point on the line y=3x+5 that is closet to the 

origin. 

sol 

Y=mx+b 

Y=3x+5----------1 

        ---------2 

  √      

  √   (    )  

   
 

 
(   (    ) ) 

 
  (    (    )) 

   
(       )

√   (    ) 
 

10x+15=0 

   
 

 
 

Y=3x+5 
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Point  ( 
 

 
 
 

 
) 
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Parametric Rule 
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Definition: 

      ( )             ( )      

      
  

  
 

  
  
  
  

 
  

  
  

   

  
  

       
   

   
 

   

  
 

   
  
  
  

 
   

  
  

   

  
  

        
   

   
 

    

  
 

    

  
  

   

  
  

Example: 

     
  

  
                               

Solution: 
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Example: 

      
   

   
            (    )                     

Solution: 

  

  
  (    )        

  

  
        

  

  
 

  
  
  
  

 
 (    )   

     
  

   

   
 

   

  
 

   
  
  
  

 

 
  

(
 (    )   

     
)

     
       

Example: 

      
   

   
                                 

Solution: 

  

  
 

  
  
  
  

 
     

    
  

   

   
 

   

  
 

   
  
  
  

 

 
  

(
     

    )
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(    )(   )  (     )(  )
(    ) 

    
 

                   
        

(    ) 
  

 

Exercise: 

       
  

  
                                  

       
  

  
                           

           

       
  

  
        

 

   
                      

       
  

  
                                

 

Remark: 

      ( )     
  

  
 

 

  
  

  

Example: 

      
  

  
             √   
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Solution: 

  

  
 

 

 √ 
 

  

  
  √      

Example: 

P18 m 

Inverse trigonometric functions.ممطلوب 

In this section we study inverse trigonometric functions 

on the one hand only, domain and  Rang.  

Example: 

Find the domain and Rang of si   ( ). 

Solution: 

 ( )       ( ) is one to one on 
  

 
   

 

 
 

 ( )       ( )         

           

   
  

 
   

 

 
  

     ( )    

     (
 

 
)  
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     (
 

√ 
)  

 

 
 

     (√
 

 
)  

 

 
  

Example: 

Find the domain and Rang of       ( )  

Solution: 

 ( )       ( ) is one to one on,   - 

 ( )       ( )         

           

          

Example: 

Find the domain and Rang of       ( ). 

Solution: 

 ( )       ( ) is one to one on .
  

 
 
 

 
/ 

 ( )       ( )         

           

   
  

 
   

 

 
  

Example: 
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Find the domain and Rang of       ( ). 

Solution: 

 ( )       ( ) is one to one on (   ) 

 ( )       ( )         

                

   (   )  

Example: 

Find the domain and Rang of       ( ). 

Solution: 

 ( )       ( ) is one to one on,   - 

 ( )       ( )         

   *     +  *      + 

   0
  

 
 
 

 
1  

 

 
  

Example: 

Find the domain and Rang of       ( ). 

Solution: 

 ( )       ( ) is one to one on0
  

 
 
 

 
1  * +  

 ( )       ( )         

   *     +  *      + 
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   0
  

 
 
 

 
1  * +  

Derivative and integrals involving inverese 

Trigonometric functions 

Thorem: 

  
 

  
       

  

√    
                 

  
 

  
       

   

√    
                 

  
 

  
       

  

    
 

  
 

  
       

   

    
 

  
 

  
       

  

| |√    
         | |     

  
 

  
       

   

| |√    
         | |     

Example: 

           ( )           
  

  
   

Solution. 

By    
 

  
       

  

√    
                 

 
  

  
       

 

√    
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Example: 

            (  )           
  

  
   

Solution. 

By    
 

  
       

  

√    
                 

 
  

  
        

   

√  (  ) 
 

Example: 

       .   
 

 
/            

  

  
   

Solution. 

   
 

  
       

   

| |√    
         | |     

  

  
     (   

 

 
)  

 .    
 
  /

|   
 
 | √.   

 
 /

 

  

 

Example: 

       (    )           
  

  
   

Solution: 

By:   
 

  
       

   

√    
                 

  

  
     (    )  

      

√       
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Example: 

     
  

  
    if         .

 

 
/         

Solution. 

 

  
       

   

    
 

  

  
     (

 

 
)  

 .
 
  /

  .
 
 /

  

Exc. 

     
  

  
    if    [     (     )]

 
         

Example: 

     
  

  
    if            

         

Solution: 

By:   
 

  
       

  

     

  

  
        

 
      

  (   
)

  

Exc 

     
  

  
    if         (         )         

Example: 
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    if         (   )         

Solution: 

   
 

  
       

  

| |√    
         | |     

  

  
     (   )  

 
 

|   |√(   )   
 

Example: 

     
  

  
    if         (      )         

Solution: 

By:   
 

  
       

   

     

  

  
     (      )  

 (              )       

  (      ) 
 

Exc: 

     
  

  
    if         ( √    )         

Exc 

     
  

  
    if         (      

   
 

  )         

Example: 

     
  

  
    if       (      )         

Solution: 
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     (       )     (      ) 

   

     

EXC 

       
  

  
    if       (      

 
)         

       
  

  
    if       (     √ )         

       
  

  
    if       (       )         

Inverse trigonometric functions. 

We will derive some related integration formulas that 

involve Inverse Trigonometric functions. 

Theorem. 

  ∫
  

√    
          

  ∫
   

√    
          

  ∫
  

    
          

      ∫
   

    
          

  ∫
  

 √    
      | |    

  ∫
   

 √    
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Example: 

Evaluate ∫
  

       

Solution. 

   ∫
  

    
          

substituting 

              

       

∫
  

      
 

 

 
∫

   

  (  ) 
 

 

 
     (  )    

Example: 

Evaluate ∫
  

 √      
 

Solution. 

   ∫
  

 √    
      | |    

substituting 
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∫
  

 √      
 

 

 
∫

   

 √(  )   
 

 

 
     (  )    

Example: 

Evaluate ∫
  

      

Solution. 

   ∫
  

    
          

substituting 

  √      √      

       

∫
  

     
 

 

√ 
∫

√   

  (√  )
  

 

√ 
     √     

Example: 

Evaluate ∫
    

√     
 

Solution. 

  ∫
  

√    
          

substituting 

               

       



The calculus in Renewable Energy Department 
 

88 
 

∫
    

√     
 ∫

    

√  (  ) 
      (  )     

EXc 

  ∫
     

√       
   

  ∫
  

√  .
 
 

 /
 

   

  ∫

 
 

      
   

      ∫
  

  
 

   
 
 

   

  ∫
 

  √    
   

  ∫
  

  √     
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Integration. 

Let F(x) and f(x) be two functions related as  

 

  
 ( )   ( ) 

Then f(x) is called the derivative of F(x) 

F(x) is called an infinite integral of f(x) and denoted by  

 ( )  ∫  ( )    

∫   
  

  
 

    

   
   

Remark: 

 

  
               ∫      
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But 

 

  
(    )          ∫      

   

 
         

C is called a constant of integration. 

Derivative and integrals involving inverese 

Trigonometric functions 

 

Integration involving Exponential 

∫            

Example: 

      ∫              

Solution. 

∫                       

Integration involving log 

∫
 

 
     | |     

Example: 

      ∫        

Solution. 
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∫         ∫
     

    
      |    |    

Example: 

      ∫
    

      

Solution. 

 

 
∫

     

      
 

 
  |   

|    

 

 

 

Integration involving Inverse Trigonometric functions  

  ∫
  

√    
          

  ∫
   

√    
          

  ∫
  

    
          

  ∫
   

    
          

  ∫
  

 √    
      | |    
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  ∫
   

 √    
          

Ex 

∫
  

      
 

Sol 

∫
  

      
 

 

 
∫

   

  (  ) 

 
 

 
     (  )    

EX 

∫
  

 √      
 

Sol 

∫
  

 √      
 

 

 
∫

  

 √(  )   
 

 

 
     (  )    
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Volumes by cylindrical shells. 

Definition: 

A cylindrical shell is a solid enclosed by two concentric 

right circular cylinders the volume V of a cylindrical shell 

with inner radius   , outer radius   and height h can be 

written as 

  ,                     - ,      -  

  (   
      

 )   

   (     )(     )   

    0
 

 
(     )1   (     )  

 

 
(     )is the average radius of the shell 

      is the thickness 

     .[average radius].[height].[ thickness] 

214رسم   
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volumes by cylindrical shells About the y-Axis. 

def 

let f be continuous and nonnegative on [a,b], and let R 

be the region that is bounded above by    ( ) below 

by the x-axis, and on the sides by the lines   

           Then the volume V of the solid of 

revolution that is generated by revolving the region R 

about the Y-axis is given by  

  ∫     ( )  
 

 

 

EX 

Use the cylindrical shell to find the volume of the solid 

generated when the region enclosed between   √    

         and the x-axis is revolved about the y-axis. 

SOL 

  ∫    √      ∫  

 
 ⁄ 

 

 

 

   [  
 

 
 

 
 ⁄

]

 

 

 
  

 
,    -  

    

 
 

 

Example: 
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Use the cylindrical shell to find the volume of the solid 

generated when the region R  in the first quadrant 

enclosed between is revolved about the y-axis and 

         

SOL 

  ∫    (     )  
 

 

 

    ∫ (      )  
 

 

 

    *
  

 
 

  

 
+
 

 

   [
 

 
 

 

 
]

 

 
 

Maximum and Minimum values 
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Mean value theorem 

Let f be differentiable on (a,b) and continuous on 

[a,b],then there is at least one number c in (a,b)such 

that  

  ( )  
 ( )   ( )

   
  

Ex 

Find the value of c by used the Mean value theorem of 

the function  ( )          where   ,    - 

Sol 

1-the function is continuous 

2-the function is differentiable 

  ( )       

  ( )       

  (  )     

  ( )     

  ( )  
 ( )   (  )

 
  

     
 ( )   (  )

 
 

    (    )  
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Areas between two curves. 398 

We showed how to find the area between two curves 

   ( ) and on interval on the x-axis. 

If f and g are continuous functions on the interval ,   - 

And if  ( )   ( )            ,   -,then the area of  

the region bounded above by    ( ) below by 

   ( ), on the left by the line      and on the right  

by the line     is 

  ∫ , ( )   ( )-
 

 

    

Ex 

Find the area of the region bounded above by       

Bounded below by     and bounded on the sides by 

the line     and    . 

Sol 

  ∫ ,      -
 

 

    

  *    
  

 
     

  

 
+
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Hyperbolic functions and Hanging cables  

In this section we will study certain combination of 

            called hyperbolic functions these functions 

which arise in various engineering applications have 

many properties in common with the trigonometric 

functions. 

Definition: 

Hyperbolic sine is         
      

 
 

Hyperbolic cosine is         
      

 
 

Hyperbolic tangent is         
     

     
 

      

       

Hyperbolic cotangent is         
     

     
 

      

       

Hyperbolic secant is        
 

     
 

 

       

Hyperbolic cosecant is        
 

     
 

 

       

Example: 

Find  sinh x if x=0. 

Sol 

      
      

 
 

   

 
    

Example: 

Find  cosh x if x=0. 
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Solution: 

      
      

 
 

   

 
    

Example: 

Find  sinh x if x=2. 

Solution: 

      
      

 
          

Derivative Hyperbolic. 

The derivative formulas for Hyperbolic functions can be 

obtain by expressing.  

Theorem. 
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Example: 

Derivative formula tanhx can be obtained by formulas 

for Hyperbolic functions  

Solution. 

 

  
      

 

  

     

     

 
      

 
  

           
 
  

     

      
 

              

      
 

 

      
         

Example: 

Derivative formula cosh   can be obtained by formulas 

for Hyperbolic functions  

Solution. 

 

  
                 

Example: 

Derivative formula sinhx can be obtained by expressing 

these functions in terms of    and    . 

Solution. 

 

  
      

 

  
(

      

 
)  
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Example: 

Derivative formula  coshx can be obtained by expressing 

these functions in terms of    and     

Solution: 

 

  
      

 

  
(

      

 
)  

      

 
       

Exercise: 

Derivative formula for       can be obtained by 

expressing these functions in terms of    and     

Exercise: 

Find the derivative formula for the functions. 

              

            

     
     

      
 

 Hyperbolic Integrals  

We will discuss methods for integrating other kinds of 

integrals that involve Hyperbolic Integrals.  

Theorems: 

  ∫                 

  ∫                 
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  ∫                  

  ∫                   

  ∫                        

  ∫                        

Example: 

 Evaluate  ∫     
 

 
    

Solution: 

∫     
 

 
         

 

 
    

Example: 

 Evaluate ∫          

Solution. 

∫         
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